

The diagram shows the curve with equation $y = \frac{3}{x}$, x > 0.

0

a Copy and complete the table below, giving the exact *y*-coordinate corresponding to each *x*-coordinate for points on the curve.

X	1	2	3	4
У				

The shaded region is bounded by the curve, the x-axis and the lines x = 1 and x = 4.

- **b** Use the trapezium rule with all the values in your table to show that the area of the shaded region is approximately $4\frac{3}{8}$.
- **c** With the aid of a sketch diagram, explain whether the true area is more or less than $4\frac{3}{8}$.
- 2 a Sketch the curve y = x(3x + 2) showing the coordinates of any points of intersection with the coordinate axes.
 - **b** Use the trapezium rule with 4 intervals of equal width to estimate the area bounded by the curve, the *x*-axis and the line x = 2.
 - c Find this area exactly using integration.
 - d Hence, find the percentage error in the estimate made in part b.
- **3** Use the trapezium rule with the stated number of intervals of equal width to estimate the area of the region enclosed by the given curve, the *x*-axis and the given ordinates.

a	$y = \frac{3}{2x+1}$	<i>x</i> = 4	<i>x</i> = 6	2 intervals
b	$y = \lg (x^2 + 9)$	x = 0	<i>x</i> = 3	3 intervals
c	$y = x^2 \sin x$	x = 0	$x = \pi$	4 intervals
d	$y = \sqrt[3]{2x+5}$	x = -2	<i>x</i> = 2	4 intervals

4 Use the trapezium rule with the stated number of equally-spaced ordinates to estimate the area of the region enclosed by the given curve, the *x*-axis and the given ordinates.

a	$y = 3^x$	x = 0	x = 3	4 ordinates
b	$y = \sin(\log x)$	<i>x</i> = 2	<i>x</i> = 2.4	3 ordinates
c	$y = \frac{x}{x^3 + 2}$	x = 0	<i>x</i> = 0.5	6 ordinates
d	$y = \sqrt{\cos\left(\frac{1}{2}x\right)}$	x = 0	$x = \frac{2\pi}{3}$	5 ordinates

© Solomon Press

5

The diagram shows the finite region, *R*, which is bounded by the curve $y = 2 - 3x^{-\frac{1}{2}}$, the *x*-axis and the lines x = 3 and x = 7.

- **a** Use the trapezium rule with 5 intervals of equal width to estimate the area of R.
- **b** Use integration to find the exact area of *R*.

The diagram shows the curve $y = \sin x^2$, $0 \le x \le 1$ and the lines x = 1 and $y = \sin 1$.

a Use the trapezium rule with 5 strips of equal width to estimate the area bounded by the curve $y = \sin x^2$, the *x*-axis and the line x = 1, giving your answer to 4 decimal places.

The shaded region on the diagram is bounded by the curve, the y-axis and the line $y = \sin 1$. A flower bed is modelled by the shaded region, with the units on the axes in metres.

b Calculate an estimate for the area of the flower bed, correct to 2 significant figures.

7 **a** Use the binomial theorem to expand $(1 + \frac{x}{2})^6$ in ascending powers of x up to and including the term in x^3 .

The finite region R is bounded by the curve $y = (1 + \frac{x}{2})^6$, the coordinate axes and the line x = 0.5

- **b** Use your expression in **a** and integration to find an estimate for the area of R.
- **c** Use the trapezium rule with 6 equally-spaced ordinates to find another estimate for the area of R.

8

The diagram shows the curve $y = x^2 + \frac{16}{x}$ for x > 0.

a Show that the stationary point on the curve has coordinates (2, 12).

The region *R* is bounded by the curve $y = x^2 + \frac{16}{x}$, the *x*-axis and the lines x = 2 and x = 4.

- **b** Use the trapezium rule with 4 strips of equal width to estimate the area of R.
- c State whether your answer to b is an under-estimate or an over-estimate of the area of R.