Integration

1

The diagram shows the curve with equation $y=\frac{3}{x}, x>0$.
a Copy and complete the table below, giving the exact y-coordinate corresponding to each x-coordinate for points on the curve.

x	1	2	3	4
y				

The shaded region is bounded by the curve, the x-axis and the lines $x=1$ and $x=4$.
b Use the trapezium rule with all the values in your table to show that the area of the shaded region is approximately $4 \frac{3}{8}$.
c With the aid of a sketch diagram, explain whether the true area is more or less than $4 \frac{3}{8}$.
2 a Sketch the curve $y=x(3 x+2)$ showing the coordinates of any points of intersection with the coordinate axes.
b Use the trapezium rule with 4 intervals of equal width to estimate the area bounded by the curve, the x-axis and the line $x=2$.
c Find this area exactly using integration.
d Hence, find the percentage error in the estimate made in part \mathbf{b}.
3 Use the trapezium rule with the stated number of intervals of equal width to estimate the area of the region enclosed by the given curve, the x-axis and the given ordinates.
a $y=\frac{3}{2 x+1}$
$x=4 \quad x=6$
2 intervals
b $y=\lg \left(x^{2}+9\right)$
$x=0 \quad x=3$
3 intervals
c $y=x^{2} \sin x$
$x=0 \quad x=\pi$
4 intervals
d $y=\sqrt[3]{2 x+5}$
$x=-2 \quad x=2$
4 intervals

4 Use the trapezium rule with the stated number of equally-spaced ordinates to estimate the area of the region enclosed by the given curve, the x-axis and the given ordinates.
a $y=3^{x}$
$x=0 \quad x=3$
4 ordinates
b $y=\sin (\lg x)$
$x=2 \quad x=2.4$
3 ordinates
c $y=\frac{x}{x^{3}+2} \quad x=0 \quad x=0.5 \quad 6$ ordinates
d $y=\sqrt{\cos \left(\frac{1}{2} x\right)} \quad x=0 \quad x=\frac{2 \pi}{3}$
5 ordinates

5

The diagram shows the finite region, R, which is bounded by the curve $y=2-3 x^{-\frac{1}{2}}$, the x-axis and the lines $x=3$ and $x=7$.
a Use the trapezium rule with 5 intervals of equal width to estimate the area of R.
b Use integration to find the exact area of R.

6

The diagram shows the curve $y=\sin x^{2}, 0 \leq x \leq 1$ and the lines $x=1$ and $y=\sin 1$.
a Use the trapezium rule with 5 strips of equal width to estimate the area bounded by the curve $y=\sin x^{2}$, the x-axis and the line $x=1$, giving your answer to 4 decimal places.
The shaded region on the diagram is bounded by the curve, the y-axis and the line $y=\sin 1$.
A flower bed is modelled by the shaded region, with the units on the axes in metres.
b Calculate an estimate for the area of the flower bed, correct to 2 significant figures.
7 a Use the binomial theorem to expand $\left(1+\frac{x}{2}\right)^{6}$ in ascending powers of x up to and including the term in x^{3}.

The finite region R is bounded by the curve $y=\left(1+\frac{x}{2}\right)^{6}$, the coordinate axes and the line $x=0.5$
b Use your expression in a and integration to find an estimate for the area of R.
c Use the trapezium rule with 6 equally-spaced ordinates to find another estimate for the area of R.

8

The diagram shows the curve $y=x^{2}+\frac{16}{x}$ for $x>0$.
a Show that the stationary point on the curve has coordinates $(2,12)$.
The region R is bounded by the curve $y=x^{2}+\frac{16}{x}$, the x-axis and the lines $x=2$ and $x=4$.
b Use the trapezium rule with 4 strips of equal width to estimate the area of R.
c State whether your answer to \mathbf{b} is an under-estimate or an over-estimate of the area of R.

